A Squared Smoothing Newton Method for Nonsmooth Matrix Equations and Its Applications in Semidefinite Optimization Problems
نویسندگان
چکیده
We study a smoothing Newton method for solving a nonsmooth matrix equation that includes semidefinite programming and the semidefinite complementarity problem as special cases. This method, if specialized for solving semidefinite programs, needs to solve only one linear system per iteration and achieves quadratic convergence under strict complementarity and nondegeneracy. We also establish quadratic convergence of this method applied to the semidefinite complementarity problem under the assumption that the Jacobian of the problem is positive definite on the affine hull of the critical cone at the solution. These results are based on the strong semismoothness and complete characterization of the B-subdifferential of a corresponding squared smoothing matrix function, which are of general theoretical interest.
منابع مشابه
Quadratic Convergence of a Squared Smoothing Newton Method for Nonsmooth Matrix Equations and Its Applications in Semidefinite Optimization Problems
We study a smoothing Newton method for solving a nonsmooth matrix equation that includes semidefinite programming and the semidefinte complementarity problem as special cases. This method, if specialized for solving semidefinite programs, needs to solve only one linear system per iteration and achieves quadratic convergence under strict complementarity. We also establish quadratic convergence o...
متن کاملAnalysis of Nonsmooth Symmetric-Matrix-Valued Functions with Applications to Semidefinite Complementarity Problems
For any function f from R to R, one can define a corresponding function on the space of n × n (block-diagonal) real symmetric matrices by applying f to the eigenvalues of the spectral decomposition. We show that this matrix-valued function inherits from f the properties of continuity, (local) Lipschitz continuity, directional differentiability, Fréchet differentiability, continuous differentiab...
متن کاملNonsmooth Newton’s Method and Semidefinite Optimization
We introduce basic ideas of a nonsmooth Newton’s method and its application in solving semidefinite optimization (SDO) problems. In particular, the method can be used to solve both linear and nonlinear semidefinite complementarity problems. We also survey recent theoretical results in matrix functions and stability of SDO that are stemed from the research on the matrix form of the nonsmooth New...
متن کاملSemismooth Matrix Valued Functions1
Matrix valued functions play an important role in the development of algorithms for semidefinite programming problems. This paper studies generalized differential properties of such functions related to nonsmooth-smoothing Newton methods. The first part of this paper discusses basic properties such as the generalized derivative, Rademacher’s theorem, B-derivative, directional derivative, and se...
متن کاملQuadratic Convergence of a Nonsmooth Newton-Type Method for Semidefinite Programs Without Strict Complementarity
We consider a Newton-type method for the solution of semidefinite programs. This Newton-type method is based on a semismooth reformulation of the semidefinite program as a nonsmooth system of equations. We establish local quadratic convergence of this method under a linear independence assumption and a slightly modified nondegeneracy condition. In contrast to previous investigations, however, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Journal on Optimization
دوره 14 شماره
صفحات -
تاریخ انتشار 2004