A Squared Smoothing Newton Method for Nonsmooth Matrix Equations and Its Applications in Semidefinite Optimization Problems

نویسندگان

  • Jie Sun
  • Defeng Sun
  • Liqun Qi
چکیده

We study a smoothing Newton method for solving a nonsmooth matrix equation that includes semidefinite programming and the semidefinite complementarity problem as special cases. This method, if specialized for solving semidefinite programs, needs to solve only one linear system per iteration and achieves quadratic convergence under strict complementarity and nondegeneracy. We also establish quadratic convergence of this method applied to the semidefinite complementarity problem under the assumption that the Jacobian of the problem is positive definite on the affine hull of the critical cone at the solution. These results are based on the strong semismoothness and complete characterization of the B-subdifferential of a corresponding squared smoothing matrix function, which are of general theoretical interest.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadratic Convergence of a Squared Smoothing Newton Method for Nonsmooth Matrix Equations and Its Applications in Semidefinite Optimization Problems

We study a smoothing Newton method for solving a nonsmooth matrix equation that includes semidefinite programming and the semidefinte complementarity problem as special cases. This method, if specialized for solving semidefinite programs, needs to solve only one linear system per iteration and achieves quadratic convergence under strict complementarity. We also establish quadratic convergence o...

متن کامل

Analysis of Nonsmooth Symmetric-Matrix-Valued Functions with Applications to Semidefinite Complementarity Problems

For any function f from R to R, one can define a corresponding function on the space of n × n (block-diagonal) real symmetric matrices by applying f to the eigenvalues of the spectral decomposition. We show that this matrix-valued function inherits from f the properties of continuity, (local) Lipschitz continuity, directional differentiability, Fréchet differentiability, continuous differentiab...

متن کامل

Nonsmooth Newton’s Method and Semidefinite Optimization

We introduce basic ideas of a nonsmooth Newton’s method and its application in solving semidefinite optimization (SDO) problems. In particular, the method can be used to solve both linear and nonlinear semidefinite complementarity problems. We also survey recent theoretical results in matrix functions and stability of SDO that are stemed from the research on the matrix form of the nonsmooth New...

متن کامل

Semismooth Matrix Valued Functions1

Matrix valued functions play an important role in the development of algorithms for semidefinite programming problems. This paper studies generalized differential properties of such functions related to nonsmooth-smoothing Newton methods. The first part of this paper discusses basic properties such as the generalized derivative, Rademacher’s theorem, B-derivative, directional derivative, and se...

متن کامل

Quadratic Convergence of a Nonsmooth Newton-Type Method for Semidefinite Programs Without Strict Complementarity

We consider a Newton-type method for the solution of semidefinite programs. This Newton-type method is based on a semismooth reformulation of the semidefinite program as a nonsmooth system of equations. We establish local quadratic convergence of this method under a linear independence assumption and a slightly modified nondegeneracy condition. In contrast to previous investigations, however, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2004